Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Rep ; 37(2): 109822, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1433046

ABSTRACT

Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/ultrastructure , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/immunology , COVID-19/immunology , Cricetinae , Cryoelectron Microscopy/methods , Epitopes/immunology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neutralization Tests , Protein Binding/physiology , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
2.
Nat Commun ; 12(1): 4635, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1333940

ABSTRACT

SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1-6. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics7-17. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (KD = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.42 µg mL-1). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log10. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/pharmacology , Antibodies, Viral/ultrastructure , Binding Sites/immunology , COVID-19/prevention & control , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Female , Humans , Mass Spectrometry/methods , Mesocricetus , Mice, Inbred C57BL , Neutralization Tests , Protein Binding/drug effects , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism
3.
PLoS Biol ; 19(5): e3001209, 2021 05.
Article in English | MEDLINE | ID: covidwho-1219261

ABSTRACT

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) threatens global public health and economy unprecedentedly, requiring accelerating development of prophylactic and therapeutic interventions. Molecular understanding of neutralizing antibodies (NAbs) would greatly help advance the development of monoclonal antibody (mAb) therapy, as well as the design of next generation recombinant vaccines. Here, we applied H2L2 transgenic mice encoding the human immunoglobulin variable regions, together with a state-of-the-art antibody discovery platform to immunize and isolate NAbs. From a large panel of isolated antibodies, 25 antibodies showed potent neutralizing activities at sub-nanomolar levels by engaging the spike receptor-binding domain (RBD). Importantly, one human NAb, termed PR1077, from the H2L2 platform and 2 humanized NAb, including PR953 and PR961, were further characterized and subjected for subsequent structural analysis. High-resolution X-ray crystallography structures unveiled novel epitopes on the receptor-binding motif (RBM) for PR1077 and PR953, which directly compete with human angiotensin-converting enzyme 2 (hACE2) for binding, and a novel non-blocking epitope on the neighboring site near RBM for PR961. Moreover, we further tested the antiviral efficiency of PR1077 in the Ad5-hACE2 transduction mouse model of COVID-19. A single injection provided potent protection against SARS-CoV-2 infection in either prophylactic or treatment groups. Taken together, these results shed light on the development of mAb-related therapeutic interventions for COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/virology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/metabolism , Epitopes/immunology , Humans , Mice , Mice, Transgenic , Neutralization Tests , Pandemics , Protein Binding , Protein Domains , Receptors, Virus/immunology , Spike Glycoprotein, Coronavirus/immunology
4.
Cell Res ; 31(5): 517-525, 2021 05.
Article in English | MEDLINE | ID: covidwho-1139736

ABSTRACT

Neutralizing monoclonal antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent promising candidates for clinical intervention against coronavirus disease 2019 (COVID-19). We isolated a large number of nAbs from SARS-CoV-2-infected individuals capable of disrupting proper interaction between the receptor binding domain (RBD) of the viral spike (S) protein and the receptor angiotensin converting enzyme 2 (ACE2). However, the structural basis for their potent neutralizing activity remains unclear. Here, we report cryo-EM structures of the ten most potent nAbs in their native full-length IgG-form or in both IgG-form and Fab-form bound to the trimeric S protein of SARS-CoV-2. The bivalent binding of the full-length IgG is found to associate with more RBDs in the "up" conformation than the monovalent binding of Fab, perhaps contributing to the enhanced neutralizing activity of IgG and triggering more shedding of the S1 subunit from the S protein. Comparison of a large number of nAbs identified common and unique structural features associated with their potent neutralizing activities. This work provides a structural basis for further understanding the mechanism of nAbs, especially through revealing the bivalent binding and its correlation with more potent neutralization and the shedding of S1 subunit.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Host-Pathogen Interactions , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/ultrastructure , Models, Molecular , Protein Conformation , Protein Multimerization , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure
5.
Cell ; 183(2): 429-441.e16, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-878393

ABSTRACT

Novel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody VH domain library from which we identified a high-affinity VH binder ab8. Bivalent VH, VH-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients. It potently neutralized mouse-adapted SARS-CoV-2 in wild-type mice at a dose as low as 2 mg/kg and exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection, possibly enhanced by its relatively small size. Electron microscopy combined with scanning mutagenesis identified ab8 interactions with all three S protomers and showed how ab8 neutralized the virus by directly interfering with ACE2 binding. VH-Fc ab8 did not aggregate and did not bind to 5,300 human membrane-associated proteins. The potent neutralization activity of VH-Fc ab8 combined with good developability properties and cross-reactivity to SARS-CoV-2 mutants provide a strong rationale for its evaluation as a COVID-19 therapeutic.


Subject(s)
Coronavirus Infections/drug therapy , Immunoglobulin Heavy Chains/administration & dosage , Immunoglobulin Variable Region/administration & dosage , Peptide Library , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/ultrastructure , Antibody Affinity , COVID-19 , Cricetinae , Female , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/ultrastructure , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/ultrastructure , Mice , Mice, Inbred BALB C , Mutation , Pandemics , Peptidyl-Dipeptidase A/metabolism , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , COVID-19 Drug Treatment
6.
Nature ; 588(7839): 682-687, 2020 12.
Article in English | MEDLINE | ID: covidwho-851300

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic presents an urgent health crisis. Human neutralizing antibodies that target the host ACE2 receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein1-5 show promise therapeutically and are being evaluated clinically6-8. Here, to identify the structural correlates of SARS-CoV-2 neutralization, we solved eight new structures of distinct COVID-19 human neutralizing antibodies5 in complex with the SARS-CoV-2 spike trimer or RBD. Structural comparisons allowed us to classify the antibodies into categories: (1) neutralizing antibodies encoded by the VH3-53 gene segment with short CDRH3 loops that block ACE2 and bind only to 'up' RBDs; (2) ACE2-blocking neutralizing antibodies that bind both up and 'down' RBDs and can contact adjacent RBDs; (3) neutralizing antibodies that bind outside the ACE2 site and recognize both up and down RBDs; and (4) previously described antibodies that do not block ACE2 and bind only to up RBDs9. Class 2 contained four neutralizing antibodies with epitopes that bridged RBDs, including a VH3-53 antibody that used a long CDRH3 with a hydrophobic tip to bridge between adjacent down RBDs, thereby locking the spike into a closed conformation. Epitope and paratope mapping revealed few interactions with host-derived N-glycans and minor contributions of antibody somatic hypermutations to epitope contacts. Affinity measurements and mapping of naturally occurring and in vitro-selected spike mutants in 3D provided insight into the potential for SARS-CoV-2 to escape from antibodies elicited during infection or delivered therapeutically. These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects and suggesting combinations for clinical use, and provide insight into immune responses against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/ultrastructure , COVID-19 Drug Treatment , COVID-19/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/ultrastructure , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Binding Sites/genetics , Binding Sites/immunology , Cell Line , Cryoelectron Microscopy , Humans , Models, Molecular , Mutation , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , Receptors, Coronavirus/ultrastructure , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure
7.
Nature ; 584(7821): 450-456, 2020 08.
Article in English | MEDLINE | ID: covidwho-664494

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic continues, with devasting consequences for human lives and the global economy1,2. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this coronavirus. Here we report the isolation of sixty-one SARS-CoV-2-neutralizing monoclonal antibodies from five patients infected with SARS-CoV-2 and admitted to hospital with severe coronavirus disease 2019 (COVID-19). Among these are nineteen antibodies that potently neutralized authentic SARS-CoV-2 in vitro, nine of which exhibited very high potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng ml-1. Epitope mapping showed that this collection of nineteen antibodies was about equally divided between those directed against the receptor-binding domain (RBD) and those directed against the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that overlap with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody that targets the RBD, a second that targets the NTD, and a third that bridges two separate RBDs showed that the antibodies recognize the closed, 'all RBD-down' conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Epitopes, B-Lymphocyte/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/analysis , Antibodies, Viral/chemistry , Antibodies, Viral/ultrastructure , Betacoronavirus/chemistry , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/prevention & control , Cryoelectron Microscopy , Disease Models, Animal , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/ultrastructure , Female , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Lung/pathology , Lung/virology , Male , Mesocricetus , Models, Molecular , Neutralization Tests , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/ultrastructure
8.
Nat Struct Mol Biol ; 27(9): 846-854, 2020 09.
Article in English | MEDLINE | ID: covidwho-653285

ABSTRACT

The SARS-CoV-2 virus is more transmissible than previous coronaviruses and causes a more serious illness than influenza. The SARS-CoV-2 receptor binding domain (RBD) of the spike protein binds to the human angiotensin-converting enzyme 2 (ACE2) receptor as a prelude to viral entry into the cell. Using a naive llama single-domain antibody library and PCR-based maturation, we have produced two closely related nanobodies, H11-D4 and H11-H4, that bind RBD (KD of 39 and 12 nM, respectively) and block its interaction with ACE2. Single-particle cryo-EM revealed that both nanobodies bind to all three RBDs in the spike trimer. Crystal structures of each nanobody-RBD complex revealed how both nanobodies recognize the same epitope, which partly overlaps with the ACE2 binding surface, explaining the blocking of the RBD-ACE2 interaction. Nanobody-Fc fusions showed neutralizing activity against SARS-CoV-2 (4-6 nM for H11-H4, 18 nM for H11-D4) and additive neutralization with the SARS-CoV-1/2 antibody CR3022.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral , Receptors, Virus/metabolism , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/metabolism , Antibodies, Viral/ultrastructure , Antibody Affinity , Antigen-Antibody Reactions/immunology , Betacoronavirus/metabolism , Binding, Competitive , COVID-19 , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes/immunology , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Models, Molecular , Peptide Library , Peptidyl-Dipeptidase A/ultrastructure , Protein Binding , Protein Conformation , Receptors, Virus/ultrastructure , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2 , Sequence Homology, Amino Acid , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/ultrastructure , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL